
 

MATH 2050C Lecture 20 Mar 29

Last time f A R cts at CEA Coron BE A

Seq Criteria construct new Cts functions

Q what if f A SR is a Cts function

defined on aneintenal A Ca b E IR
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f a b IR is cts everywhere
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Q what's special about A Ca b

All C C Carb AEI cluster pt of A Ca b

fatsso C lim fix fcc
at a x c

Nested Internal Property compactness

Bolzano Weierstrass Thm of A Co I

connectedness of A Co I

We will prove 3 important theorems
5.3 textbk

I Boundedness Thm
ly compactness

2 Extreme value Thm

3 Intermediate Value Thin connectedness

Recall f A IR cts at CEA a

f is locally bold near a fool
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Caution M and S depends on C in general



Boundedness Theorem

Any Cts f i Ca b IR is bold globallyon Cab
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Proof By Contradiction suppose in contrary

that f is NIT bold on Ca b
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kn is a seq in Ca b
hence is a bold seq
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f is Cts on Ca b in particular at X C Cab
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So fGenk Ken is a convergent seq thus

must be bold However by construction of kn
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f Xna is unbdd which is a contradiction
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Remark All assumptions are required for the

theorem to hold
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By Boundedness Thin f Ca b B Cts

to t f f Cx x e ca b E IR is bold

By Completeness of LR there exist

M a sup fix I G Ca b

m in f f f Cx x C Ca b

In fact these sup d inf are achieved

Extreme Value Theorem

A Cts f Ca b B always achieve its

absolute maximum and minimum ie
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Remark The theorem guarantees the
existence

of maxima x and mihina Xx but NES their

uniqueness



For example f C 1 I B

f X e X
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Remark All assumptions are required in the theorem
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Proof of Extreme Value Theorem

We prove the existence of a maxima X and

leave the minima X as an exercise

Regis M a sup fix x C Ca b

By defa of supremum H E so I Xg C Ca b

St M E c face E M

Take E th n c IN we obtain a seq
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Claim fcx M ie x is a maxima
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Why non uniqueness of maximalminima
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Concerning the connectedness of A Ca b

we have

Intermediate Value Theorem

Let f Ca b 7 IR be a Cts function St
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Remark The assumptions in the
theorem are all

necessary
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