MATH 2050C Lecture 20 (Mar 29)

 $Q:$ What's special about $A = [a, b]$?

- . All $C \in [a, b]$ ARE cluster pt of $A = [a, b]$. S_0 , T_{cts} (=) $L_{im}f(x)$ = $f(c)$ at G x \rightarrow c
- Nested Interval Property J "Compactness"
- . Bolzano-Weierstrass Thm
- Onnecte dness " of A = [0.1].

We will prove 3 important theorems (§ 5.3 textbk) I Boundedness Thm ly compactness ² Extreme value Thm (3) Intermediate Value Thin) connectedness"

Laution: M and S depends on C in general.

Boundedness Theorem

Any
$$
\frac{cts}{ds} f : [a,b] \rightarrow \mathbb{R}
$$
 is bold (globallyon [a,b]).
\ni.e. $\exists M > 0$ st. |f(x) | $\le M$ $\forall x \in [a,b]$.
\nProof: By Contraction, suppose in contrary
\nthat f is $N\underline{or} f$ bold on [a,b].
\n $\Rightarrow \forall n \in \mathbb{N}, \exists x_n \in [a,b]$ st. |f(x_n)| > n
\n \oplus $\forall n \in \mathbb{N}, \exists x_n \in [a,b]$, hence it a bold seq.
\n \oplus will $\Rightarrow \exists$ subset. (x_{n_k}) of (x_n) st.
\n $\lim_{k \to \infty} (x_{n_k}) = x_k$ for some $x_k \in \mathbb{R}$
\n $\lim_{k \to \infty} (x_{n_k} \ne b \forall k \in \mathbb{N})$
\n $\lim_{k \to \infty} a \le x_n \le b$ if $\le k_k \in [a,b]$.
\n \oplus f is cts on [a,b], in particular, at $x_k \in [a,b]$.
\n \therefore \Rightarrow $\lim_{x \to x_k} f(x) = f(x_k)$
\n $\frac{Ce_1}{R} \cdot$ Gréina $\Rightarrow \lim_{k \to \infty} f(x_{n_k}) = f(x_k)$

 By Boundedness Thin. $f: [a, b] \rightarrow R$ cts \Rightarrow $\phi * \int f(x) \mid x \in [a,b] \} \subseteq R$ is bold By Completeness of R. there exist $M := \sup \{f(x) \mid x \in [a,b]\}$ $m := \inf \{ f(x) | x \in [a, b] \}$ In fact, these sup & inf are achieved. Extreme Value Theorem A cts $f: [a, b] \rightarrow \mathbb{R}$ always achieve its absolute maximum and minimum ie $\exists x^{\pi} \in [a, b]$ st $f(x^{\pi}) = M = \sup \{f(x) | x \in [a, b] \}$ $\exists x_k \in [a, b]$ st $f(x_k) = m = inf{f(x) | x \in [a, b]}$ Remark: The theorem guarantees the existence" of maxima x^* and mihina x_* , but N_{eff} their "uniqueness".

For example. $f: [-1, 1] \rightarrow \mathbb{R}$ $f(x) := x^2$ $y = f(x) = x^2$ \uparrow M=1 m=0 \mathbf{X}_{k} Remork: All assumptions are required in the theorem (3) $M_{\overline{2}}$ cts (2) intervel (1) unbdd interel Not closed. $f: \mathbb{R} \rightarrow \mathbb{R}$ $f: [0.1] \rightarrow \mathbb{R}$ $f: (0,1) \rightarrow (R)$ $f(x) = \begin{cases} x & \text{if } x = 0, 1 \\ \frac{1}{x} & \text{if } x = 0, 1 \end{cases}$ $f(x)$ = tanh x $f(x) = x$ $M = 1$ $M = 1$ $N=1$ m=a Ō

Proof of Extreme Value Theorem We prove the existence of a maxima x^* and leave the minima $X_{\#}$ as an exercise. Recall: $M := sup {f(x) | x \in [a,b]}$ By def² of supremum. \forall 2 > 0. \exists x_{ξ} \in [a.b] st $M - \epsilon$ < $f(x_i)$ \leq M Take $\epsilon = \frac{1}{n}$, $n \in \mathbb{N}$, we obtain a seq. $(\mathcal{X}_n) \subseteq$ [a.b] st. $M - \frac{1}{n}$ < $f(x_n)$ $\leq M$ Vne.IN As before, $BWT = 3$ subseq of (x_n) $(\chi_{n_k}) \longrightarrow \chi^* \in [a,b]$ $Clain: f(x^*) = M$, ie x^* is a maxima. F: By construction. $M - \frac{1}{n_k}$ < $f(x_{n_k})$ $\leq M$ $\forall k \in \mathbb{N}$ Take $k \rightarrow \infty$, by continuity of f at $x^* \in [a, b]$, $M \leq \lim_{k \to \infty} f(x_{n_k}) = f(x^*) \leq M$ \blacksquare

 $Q:$ why non-uniquents of maximal minima?

For example.
$$
f: [-1, 1] \rightarrow R
$$

 $f(x) := x^2$

Concerning the "connectedness" of A = [a.b].

we have

Intermediate Value Theorem

Let $f : [a, b] \rightarrow \mathbb{R}$ be a cts function s.t. $f(a) < f(b)$ THEN: H R C (f(a), f(b)), \exists C C (a.b) s.t. $f(c) = k$

